
2021 6th International Electrical Engineering Conference (IEEC 2021) 

April, 2021 at NEDUET, Karachi, Pakistan 

1 

 

I. INTRODUCTION 

SPI interface is often considered one of the simplest 

and best communication protocols among the Peripheral 

Component Interconnect (PCI)-Express, Universal Serial 

Bus (USB) and others in the world of digital 

communication systems. SPI can connect with several 

numbers of communication devices and facilitate a fast-

speed bidirectional data communication between both 

devices. On the contrary, other serial data 

communication protocols such that I2C and Universal 

Asynchronous Receiver/Transmitter (UART) require 

more time to bidirectional data transportation on a single 

wire. Furthermore, SPI communication between sensors 

is very common and easy to implement. Several works 

have been done to the sensor interface and data 

communication between SBCs and Complementary 

metal-oxide-semiconductor (CMOS) devices. ([1] - [3]) 

Many works have been proposed in the literature to 

optimize the speed of SPI communications. A power-

down mode of SPI operation is proposed in [4]. Shift 

registers are used as double buffer registers to avoid 

overflow data loss. Apart from that, the technique using 

clock signal in this architecture has reduced 13% power 

utilization by employing shift registers. Design and 

testing of high-quality SPI interface for On-chip 

Peripheral Bus (OPB) are discussed in [5]. Full 

description proposed SPI Intellectual Property (IP) is 

implemented on in Verilog HDL at Xilinx Virtex 5 

FPGA board. High-speed SPI communication for motion 

controller is implemented on FPGA [6].  

 
Fig. 1: Read-out Interface (ROI) Block Diagram 

SPI is simulated using Mentor’s ModelSIM and 

deployed on ALTERA DE2, Cyclone FPGA board. 

Experimental results are presented between different data 

transfer modes with correct data types renders continuous 

data transfer.  

Fig. 1 shows the SPI connection with analog type 

sensors. The There are three different sensors connected 

to the SBCs directly through the SPI protocol. The SPI 

facilitates the sensors top collect the data synchronously 

by using Chip Select (CS) with the utility of FPGA clock 

frequency. Furthermore, the control bits are transmitted 

to each sensor. 

With the advancement of technology, there is a need 

for fast and reliable serial communications protocols. 

Therefore, FPGAs can be utilized for data 

communications as well as fast data processing and 

control. FPGA Finite State Machine (FSM) architecture 

for UART protocol is developed for the Radio-Frequency 

Identification (RFID) tag data communication [7]. 

FPGA Implementation of a High-Speed SPI Design  

For Single Board Computers (SBCs) 

Farooq Alam1 and Fariha Farooq2  

1 Department of Electronics and Power Engineering,  

National University of Sciences and Technology, Islamabad, Pakistan (farooq.phdee19pnec@pnec.nust.edu.pk) 
2 College of Engineering, PAF-KIET, Karachi, Pakistan 

 

Abstract:  This paper proposes a Field Programmable Gate Arrays (FPGA) based implementation of a high-speed Serial 

Peripheral Interface (SPI) protocol for readout connectivity with the Single Board Computer (SBC). Micro-

Electromechanical Systems (MEMs) have customized readout circuits and an SPI interface can help standardize their 

connectivity with off-chip SBCs. We develop SPI interface for the standard Commercial-Off-The-Shelf (COTS) 

accelerometer and gyroscope available from Analog/Digital Interface (ADI) or STMicroelectronics (STM). We employed 

the Xilinx FPGA board to interface with accelerometer and gyroscope sensors which regularly collects high-speed data 

for further high-level processes. Furthermore, we proposed a parallel interface for both sensors operating simultaneously 

exploiting FPGA hardware parallelism which renders the overall speed of data communication significantly increased. 

Subsequently, we want to connect the MEMs chip to the SBCs. Therefore, we used a Raspberry pi board which facilitate 

us for testing and implementation of the proposed methodology. The proposed SPI protocol has an operating frequency 

10MHz and it is adaptable to different device frequencies. Simulation, as well as hardware results, are provided. 

 

Keywords: SPI, Xilinx FPGA, Verilog HDL, MEM SBC integrations, Raspberry pi. 

 



2 

 
Fig. 2: Proposed SPI architecture 

Optimized communication design is presented for 

vehicle parking systems.  

Since the Raspberry operates Linux OS and the FPGA is 

designed at digital logic components, we choose to 

deploy the SPI design on the FPGA board, which does 

not require the use of a synchronous clock.  

A shift register delivers by the SPI Master synchronizes 

the communication protocol, regardless of the built-in 

clock generation module of each side.  

We picked Python software for the Linux OS (Raspberry) 

and Verilog HDL for the FPGA in terms of computer 

languages. As a consequence, on the Linux software, the 

SPI operator can be combined with widely used 

architectures. [8] 

Raspberry PI 2 model B used as the SPI slave with FPGA 

Master. A General-Purpose Input/Output (GPIO) port is 

included in the Raspberry PI (GPIO). This GPIO's four 

lines were used to introduce SPI. The SPI Master library 

is implemented in Python. The application server is 

installed on the Raspberry Pi to allow for the 

development of a user-friendly application for 

experimenting and testing utilization. The Python 

programming and modules are used to build an SPI 

Master engine. 

This paper is organized as follows. Section II elaborates 

design specifications of the proposed SPI interface. 

Section III presents the proposed strategy. Section IV 

explains the simulation results. Section V demonstrate 

practical results and section VI draws the final 

conclusions and point forward future work. 

  

II. DESIGN SPECIFICATIONS OF SPI 

INTERFACES 

 

The industry-standard SPI master controller is a 4-wire 

signal interface. Data width is 8-bit standard word length. 

However, nonstandard 3 to 16-bit word length 

communication can be performed. Standard SPI signal 

consists of Chip Select (CS), Serial Clock (SCLK), 

Master Out Slave In (MOSI) and Master In Slave Out 

(MISO). Fig. 2 shows the complete block diagram of our 

SPI interface.   

 

(a) SPI shift registers design 

 

(b) Parallel to serial data multiplexing design 

Fig. 3: Slave controller component level design          

A raspberry pi 3 model B is employed as a master 

controller which mainly produces SCLK and CS output 

signals. Raspberry pi 3 has built-in BCM2835 and 

WiringPi libraries for SPI interface. It works on Linux 

(Raspbian) which is an open-source operating system. 

Therefore, programming in Python was developed in a 

free programming builder Geeny editor. The real-time 

SPI data results in display on the Linux command 

window environment. The python programming 

performs following functions. [9] 

 Generate CS signal periodically to receive the SPI 

data. 

 Generate SCLK signal for the SPI slave input. 

 Generate MOSI data to deliver at the FPGA input. 

 Receive MISO input for the Raspberry pi module. 

On another hand, Xilinx Spartan 6, LX9 FPGA micro-

board is used as a slave which receives command signals 

from the Master controller. FPGA is a fast processing 

device that works for data generation and returns it to the 

master controller. Idea is to develop a fast and efficient 

SPI interface that facilitates wide data range transfer 

between SBC and the external world. Therefore, the 

embedded controller for the SPI interface requires both 

the high data rate transmission as well as the processing 

speed. Xilinx Spartan 6, micro-board has a 100 MHz on-

board CMOS CDCE913 modular Phase 



  

 

3 

 
Fig. 4. Flow chart of FPGA for SPI bus interfacing 

      
Fig. 5. Raspberry pi read interfacing flow algorithm. 

Lock Loop (PLL) based low-cost and high-performance 

programmable clock. Hence, this technology facilitates 

achieving more optimized and fast SPI communications. 

[10] 

III. PROPOSED STRATEGY 

The proposed design component level design of SPI 

interface and implemented on FPGA. The design of an 

SPI is similar to shift registrars. Parallel in serial-out shift 

registers stores data to proceed and work on the correct 

side to further process. A simplified architecture 

 

Fig. 6: Complete Register Transfer Level (RTL) view 

of shift registers shown in Fig. 3a.  

Since MOSI serial data needs to be converted into 

parallel for verifications and data processing in slave 

controller, master clock synchronized sequential logics 

are used for shifting of Serial Data (SDAT). Furthermore, 

combinational logic gates render a simultaneous Parallel 

Data (PDAT) data delivery of all stages based on the CS 

logic conditions. Data storage and a number of stages 

cause transition delays. Therefore, our customizable 

serial to parallel conversion module can operate up to 128 

SDAT to PDAT conversions. Fig. 3b shows the 

schematic of a parallel data PDAT to serial SDAT 

conversion. In this module, we multiplexing the 8-bit 

PDAT parallel input data to convert into SDAT serial 

output data. There exists a counter which generates 3-bit 

binary count increments fed into the channel selection of 

multiplexer. Consequently, sequential data generate an 

exhibit from PDAT Least Significant Bit (LSB) to Most 

Significant Bit (MSB). The generated data needs to be 

clock-driven with master control. Therefore, Flip Flop 

(FF) is used to provide master clock synchronized output. 

Fig. 4 shows the flow diagram of the FPGA software. As 

CS becomes small, FPGA checks bit by bit the rising 

edge of the Raspberry pi clock from MOSI pin. However, 

when the FPGA reads a segment and determines whether 

it is a read or writes functions depending on the byte flags. 

The address Byte is also interpreted by the FPGA. FPGA 

utilizes a logic function to temporarily store the address 

location for reading operations. FPGA transfers the 

message bit by bit from the registry at the MISO pin site. 

The FPGA also sends the next byte in the writing process. 

A temporary function logic is the value of FPGA's data. 

Besides this, FPGA writes data values in the registry. 

Fig. 5 shows the flow map of the Raspberry pi flow for 

the serial interface. For write operations, the method 

takes bytes and bytes to write. As the Raspberry pi IO 

port mode is set to in or out for both transmitting and 

receiving respectively. This subsidiary writes or checks a 



2 

 
Fig. 7: Results on oscilloscope 

full byte with the IO pin, bit by bit. The write flag will be 

placed in the standardized flow chart and the address will 

be preceded, which shows the next operation. Similarly, 

for reading, the Raspberry pi reads the data byte or writes 

data according to the flow of the algorithm.  

  

IV. SIMULATION RESULTS 

    The top-level RTL view of the overall module is 

presented in Fig. 6. The Verilog HDL module has four 

inputs reset, SCLK, CS, MOSI and relevant single output 

port MISO which connects with the Raspberry pi. Here 

clock generator module divides 1 MHz SPI clock 

frequency which is further fed into a clock synchronizing 

module used to generate trigger signal and count 

increments while counting number of Master input clock 

cycles. The up counting of master clock cycle facilitate is 

further used to drive both shift register and multiplexer 

modules. To synchronize SPI interface with slave, 

counter counts total of 16 clock cycles before restarting 

again due to CS idle. Afterward, that count fed into serial 

to parallel data conversion module to convert SDAT 

MOSI input data into PDAT processing. In the end, 

PDAT needs to convert into serial data SDAT again to 

transfer it to the master controller. Eventually, the 

transmitted serial data is displayed on the command 

window screen of master controller. 

Fig. 7 shows a time-line simulation of our SPI design. 

Initially CS signal is low. Since SPI communication 

remains idle while CS high. Therefore, SCLK, MOSI and 

MISO remain at default condition. When turning low, 

serial communication has started and SCLK begins to 

transfer from master to slave controller.

 

Fig. 8: Hardware setup 

 Subsequently, MOSI data transfer starts from master to 

slave controller. serial MOSI transferred data bits 

8’b11100111 or 8’d224 data bits. 

  

V. HARDWARE IMPLEMENTATION 

To implement SPI serial communication between master 

and slave, we employed raspberry pi 3 model B as a 

master controller and Xilinx Spartan 6 LX9 Micro-Board 

as a slave physical controller. FPGA Peripheral Module 

(PMOD) connection facilitates to interface Micro-board 

with the external world. Raspberry pi has dedicated 

General Purpose Input/Output (GPIO) ports for SPI 

interface. Hence, we can link both embedded controllers 

so that we able to initialize serial communication 

between them. Fig. 8 shows the hardware test bench 

where serial data can be observed on the Raspberry pi 

command window as shown in Fig. 9. Moreover, data 

transmission between devices can be observed at the 

oscilloscope which results are presented in Fig7. The 

summary of resource utilization is presented in Table I. 

TABLE I: FPGA resource utilization summery 

Device type Used Available % 

Slice registers 15 11,440 0% 

Slice LUTs 21 5,720 0% 

Slice LUTs as logic 7 5,720 1% 

Slice LUTs as flip flops 14 22 63% 

Bounded IOBs 11 200 5% 

 

 

 



  

 

3 

 
Fig. 9: Master controller SPI data display 

VI. CONCLUSION 
 

This paper presents an FPGA-based implementation 

of a high-speed SPI interface. We develop an SPI 

interface for the standard COTS accelerometer and 

gyroscope available from ADI or STM. this research. 

This relation is used to construct a high-level program. 

This exemplifies a workable approach. On the FPGA, 

Verilog HDL is used. On the side, and using a high-level 

user interface approach on the other hand. We've 

restricted the program to digital inputs/outputs. The job 

can be generalized to cover other areas of the 

organization. FPGA stands for Field Programmable Gate 

Array. This makes it possible to change the behavior. 

Dynamically of an FPGA It's also possible to finish the 

job in a shorter period. the idea of speeding up the 

communication, which is correlated to the speed of the 

Master's clock. We employed the Xilinx FPGA board to 

interface with accelerometer and gyroscope sensors 

which regularly collects high-speed data for further high-

level processes. 

REFERENCES 
 
[1] Slawomir Michalak, “Raspberry Pi as a 

measurement system control unit”, International 

Conference on Signals and Electronic Systems 

(ICSES), 2014. 

[2] Xuhui Chen, Hongyun Yang*, “Binary Image 

Acquisition Method of CMOS Image Sensor based 

on MCU SPI interface”, International Conference 

on Advanced Computing and Applications, 2015. 

[3] Anand N ; George Joseph ; Suwin Sam Oommen ; 

R Dhanabal, “Design and implementation of a high 

speed Serial Peripheral Interface”, IEEE 

International Conference on Advances in Electrical 

Engineering (ICAEE), 2014. 

[4] Dwaraka N Oruganti ; Siva S Yellampalli, “Design 

of power efficient SPI Interface”, International 

Conference on Advances in Computing, 

Communications and Informatics, 2015. 

[5] A.K. Oudjida ; M.L. Berrandjia ; A. Liacha ; R. 

Tiar ; K. Tahraoui ; Y.N. Alhoumays, ”Design and 

test of general-purpose SPI Master/Slave IPs on 

OPB bus”, 7th IEEE International Multi- 

Conference on Systems, Signals and Devices, 2010. 

[6] NurQamarina binti Mohd Noor ; Azilah Saparon, 

“FPGA implementation of high speed serial 

peripheral interface for motion controller”, IEEE 

Symposium on Industrial Electronics and 

Applications, 2012. 

[7] Wajeeha Umar ; Farooq Alam ; S.M. Usman Ali 

Shah, “Optimized design of A Parking 

Management System Using FPGA”, IEEE 

International Conference on Open Source Systems 

& Technologies, 2014. 

[8] NurQamarina binti Mohd Noor, Azilah Saparon, 
“FPGA Implementation of High Speed Serial 

Peripheral Interface (SPI) for Motion Controller”, 

IEEE Symposium on Industrial Electronics and 

Application 2012. 

[9] Haissam Hajjar, Hussein Mourad, “Implementation 

of an FPGA - Raspberry Pi SPI Connection”, 

International Conference on Advances in Circuits, 

Electronics and Micro-electronics, 2019. 

[10] Shantanu Telharkar, Shreerang Dabade, Tejas 

Karangale, Shardul Telharkar, “FPGA 

Implementation of Motion Control Interface”, 

International Journal of Advanced Research in 

Electrical, Electronics and Instrumentation 

Engineering, 2015. 
 


