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I. INTRODUCTION 
 
  Due to environmental pollution and energy crisis, the 

transport industry is anticipating a proliferation of 

Electric Vehicles (EVs). The charging activities of EVs 

are expected to increase the demand congestion on the 

power grids, consequently increasing active power 

losses.  The high power losses reduce the efficiency of 

transmitting energy to the utility’s end-users. In addition, 

electric companies will be obligated to pay financial 

penalties when active power losses will exceed the 

standard ones [1].  Hence its reduction has gained 

much more attention from utilities [2].  

Fortunately  due to technological revolutions, 

system planners are motivated to change the way a 

distribution network is planned and operated [3]. 

Therefore Distribution Automation Systems are being 

deployed to achieve Smart Distribution System (SDS). 

Under SDS paradigm, Demand Response Programs 

(DRPs) are being considered as a promising tool to 

operate system reliably. DRP motivates consumers to 

interrupt their electricity usage for brief time duration 

against some agreed rewards [4].  

 

Research in [5-7] has analyzed DRP schemes 

considering the financial profit a consumer or an electric 

utility can obtain. Work reported in [8, 9] has 

concentrated on consumers’ behavior and choices in 

proposed DRPs, while DRPs in [10-12] have 

incorporated Renewable Energy Resources in the 

system. Nevertheless, DRPs are limited by consumer 

electricity consumption pattern where consumers have 

to trade off between their electric usage and comfort 

level.  

 

Thus, presented study proposes new dimension to tackle 

the problem by hybridizing DRP with distribution 

Network Reconfiguration ((NR).  

 

NR is a method of altering the configuration of the 

network by changing the status of sectionalizing and 

tie-switches to accomplish specified objectives [13, 14]. 

During the last two decades numerous methods have 

been employed for NR. The most important point is how 

to use the specific knowledge of the problem domain to 

model and implement it [15]. Yet, algorithm that can 

explore and exploit searching modes of problem with 

least switching frequency of tie switches in hybridized 

domain was lacking. The mentioned shortcoming is 

resolved in this study by employing GWO technique. 

 

Main contributions of this paper are as follows:  

 

 To study the combined effect of NR and DRP 

on system active power losses, 

utility-customer profits and utility operating 

cost with EVs connected to the distribution 

grid.  

 To apply Grey Wolf Optimization algorithm 

for the multi-objective distribution system 

reconfiguration problem. 

 

II. PROBLEM FORMULATION 
 
The proposed strategy is formulated as a weighted 

single objective optimization problem as: 

Impact of reconfiguration and demand response program considering electrical 

vehicles in smart distribution network 
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Abstract: Depletion of energy reserves has promoted plug-in-hybrid electric vehicles to replace gasoline fuelled 

automobiles. The charging of these vehicles increases the grid load demand and therefore active power losses are 

increased. This paper presents combined demand response program and reconfiguration approach to simultaneously 

reduce active power losses and utility operating cost, considering vehicles load uncertainties. Demand response 

program based on load management contract is executed to manage load consumption, whereas for reconfiguration 

purpose Grey wolf optimization algorithm (GWO) is used. Standard 69-bus system is considered for the authentication 

of the proposed work. The implementation of reconfiguration and demand response has reduced 57.2% losses and has 

benefitted both consumer and utility economically. 
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where 
hPL and 

base

hPL is active power loss with and 

without strategy. 
DRNR

hOC _
is the utility operating cost 

after reconfiguration and demand management at each 

hour. Rm and Im are the m
th 

branch resistance and current, 

nb is the total number of branches in the distribution 

system, Pdh is the power demand at each hour, Cgrid [16] 

is the cost of purchased power that is supplied to 

consumers, CDRP is the cost due to the execution of DRP 

and is usually the incentive cost paid to customers for 

interrupting the power demand.  

 

It is noteworthy that all necessary constraints related to 

DRP, NR and EV battery protection have been 

considered.  
         

 

III. METHODOLOGY 

 

Step1: The load pattern is achieved by randomly 

plugging EVs to the system buses as shown in Fig.1. 

The uncertainties associated with number of EVs are 

modeled using Monte Carlo simulations. It is assumed 

that EVs will start charging if remaining energy is less 

or equal to 20% of total battery capacity. In this work, 

EVs are charged through level 1 charging scheme [17]. 

 

 

Fig.1 Load profile considering EVs 

Step 2: DRP is based on load management contract, 

where customer’s cost and benefit functions are 

modeled by Eqs. (6) and (8), as developed in [18-20]. It 

is important to note that customer type plays a 

significant role in designing the cost model because 

different customers represent different loads and thus 

imply different outage costs [20, 21]. Thus, the variable 

C is the customers’ type and is utilized to distinguish 

different customers based on their willingness to shed 

power. C is normalized and ranges between 0 and 1, so 

if C =0 it means the customer is least willing to curb his 

load, and if C =1 it shows most willing customer.  
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where I is the monetary incentive for any customer. 

Thus if j number of customers are shedding their load 

then customer benefit is obtained through 
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 Besides, for a day, each j customer will get total profit 

as:  
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 Similarly utility benefit function based on DRP, at hour “h” is modeled as:  
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where for j customers, net utility benefit for entire day is 

modified as:  
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where λ is the cost of not delivering power to any 

specific location in the system. This parameter is 

usually calculated by electric utilities and is termed as 

“value of power interruptibility” [19, 20].  

 

Game theory based mechanism design with 

revelation principle is applied to determine incentive I 

and curbed load l [19]. In this study, the load 

management contract is extended for a day, and is 

incorporated with reconfiguration algorithm. 
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Step 3: The system is reconfigured using GWO 



algorithm as described in [22]. 
 

 

IV. RESULTS 
 
The system performance has been evaluated on the basis 

of minimum power losses and reduced demand 

consumption on 69-bus test system. The reduction in 

load demand has been achieved with active participation 

of customers that have willingly curbed their load and 

has gain profit as demonstrated in Fig.2.  

 

 

Fig.2 Utility and consumer profits 

As evident in Fig.3 the power loss at maximum 

demand hours for base configuration is 225kW. The 

additional stochastic EV charging load on grid has 

increased this loss from 225kW to 253kW. Yet, with the 

application of proposed scheme, 57.2% loss reduction 

has been observed. Furthermore, the desired objective 

function is minimized from base value of 1 per unit as 

depicted in Fig. 4. 

 
 

 

Fig.3 Active power loss reduction 

 

Fig.4 Objective function with proposed scheme 

The five tie switches for the base configuration 

of the system is [69, 70, 71, 72, 73]. From Table 1, it 

can be seen that four out of five new tie switches are 

similar for each time period. This implies that the 

method has overcome the drawback of frequently 

changing all the five tie switches. Thus utility can save 

money involved in additional operational cost and 

efficient protection schemes, which are associated with 

system reconfiguration [23]. 
 

Table 1: Hourly positions of new tie switches 
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V. CONCLUSION 
 
 

In this paper joint execution of reconfiguration and 

demand response program has been studied. The 

uncertain EVs charging activities have been included to 

operate the network under stress condition. Load 

management contract benefitting both customer and 

utility has been implemented to analyze the effect of 

demand response on the active power losses in a 

distribution network and on utility operating cost. SDS 

is optimally reconfigured via Grey wolf optimization 

method. Hence presented scheme can be adopted as a 

feasible option from utility perspective to obtain 

technical and economical gains. 
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